Extension of Generalized Plasticity Model for Thermocyclic Loading

Author:

Sobotka J. C.1,Dodds R. H.2

Affiliation:

1. Post-Doctoral Researcher e-mail:

2. Professor Emeritus e-mail:  University of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract

This work extends the generalized plasticity model for structural metals under cyclic loading proposed by Lubliner et al. (1993, “A New Model of Generalized Plasticity and its Numerical Implementation,” Int. J. Solids Struct., 22, pp. 3171–3184) to incorporate temperature-dependence into the elastic-plastic response. Proposed flow equations satisfy the Clausius–Duhem inequality through a thermodynamically consistent energy functional and retain key aspects of conventional plasticity models: Mises yield surface, normal plastic flow, and additive decomposition of strain. Uniaxial specialization of the 3D rate equations leads to a simple graphical method to estimate model properties. The 3D integration scheme based on backward Euler discretization leads to a scalar quadratic expression to determine the plastic strain rate multiplier and has a symmetric algorithmic tangent matrix. Both properties of the integration lead to a computationally efficient implementation especially suited to large-scale, finite element analyses. In comparison studies using experimental data from a Cottrell–Stokes test, the modified rate equations for the generalized plasticity model capture a thermally activated increase in the flow stress.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference28 articles.

1. A Simple Theory of Plasticity;Int. J. Solids Struct.,1974

2. A Theory of Plasticity With Non-Coincident Yield and Loading Surfaces;Acta Mech.,1971

3. On Loading, Yield, and Quasi-Yield Hypersurfaces in Plasticity Theory;Int. J. Solids Struct.,1975

4. An Axiomatic Model of Rate-Independent Plasticity;Int. J. Solids Struct.,1980

5. A Maximum-Dissipation Principle in Generalized Plasticity;Acta Mech.,1984

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3