Secondary Flow Due to the Tip Clearance at the Exit of Centrifugal Impellers

Author:

Ishida M.1,Senoo Y.2,Ueki H.3

Affiliation:

1. Faculty of Engineering, Nagasaki University, Nagasaki 852, Japan

2. Miura Company, Matsuyama 799-26, Japan

3. Nagasaki University, Nagasaki 852, Japan

Abstract

The velocity distribution was measured at the exit of two different types of un-shrouded centrifugal impeller under four different tip clearance conditions each; one with 20 radial blades and inducers and the other with 16 backward-leaning blades. The effect of tip clearance on input power was also measured. By increasing the tip clearance, the input power was hardly changed in the radial blade impeller and was reduced in the backward-leaning blade impeller. The velocity distribution normalized by the passage width between hub and shroud wall was hardly changed at the exit of the radial blade impeller by varying the tip clearance. On the other hand, the relative flow angle was reduced significantly and monotonously by an increase of tip clearance in the backward-leaning blade impeller. The change in input power due to the tip clearance was clearly related to the change of flow pattern at the exit of impeller due to the secondary flow. This is most likely caused by the component, normal to the blade, of the shear force to support the fluid in the clearance space against the pressure gradient in the meridional plane without blades.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3