Investigation of Fault Modeling in the Identification of Bearing Wear Severity

Author:

Alves Diogo Stuani1,Machado Tiago Henrique1,da Silva Tuckmantel Felipe Wenzel1,Keogh Patrick S.2,Cavalca Katia Lucchesi1

Affiliation:

1. Laboratory of Rotating Machinery, School of Mechanical Engineering, UNICAMP, 200, Rua Mendeleyev, Campinas, CEP 13083-860, SP, Brazil

2. Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK

Abstract

Abstract Recent research into machines involved in power generation processes has demanded deep investigation of model-based techniques for fault diagnosis and identification. The improvement of critical fault characterization is crucial in the maintenance process effectiveness, hence in time/costs saving, increasing performance and productivity of the whole system. Consequently, this paper deals with a common fault in hydrodynamically lubricated bearings assembled in rotating systems, namely, that of abrasive wear. Research on this topic points to an interesting query about the significance of model detail and complexity and the identification of its characteristic parameters for the important stages of fault diagnosis and fault identification. For this purpose, two models are presented and analyzed in their completeness concerning the fault signature by vibration measurements, as well as the identification of fault critical parameters which determine the machine lifetime estimation, maintenance procedures, and time costs regarding performance and productivity. From this study, the detailing in fault modeling has a substantial impact on fault parameter identification, even if its improvement is not so expressive in fault diagnosis procedures involving standard signal processing techniques of vibration signatures.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3