Nonequilibrium Thermal Fluctuations of Flow in Thermal Systems

Author:

Li Wei1

Affiliation:

1. Department of Energy Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China

Abstract

Abstract Fouling is detrimental to the heat transfer performance of concentrated solar power plant components where heat exchange takes place with the cooling tower water. Wave elements cause an expression of deep insight of the fouling formation. A new physical concept of wave element is proposed; it is the wave interface between two molecule groups with an infinitesimal temperature difference in fluid. It is generated by density difference, which results from temperature difference. Tiny temperature differences always exist everywhere in a fluid. When a fluid is in motion, wave elements are generated among molecule groups. Wave motion and Brownian motion can serve as the two basic forms of motion of the molecules in flow. Temperature controls Brownian motion. Temperature differences and the fluid's motion cause the wave elements. Nonequilibrium thermal fluctuations present as wave elements in a flow. A wave element appears as wave behavior along the space and time dimensions that are based on the continuity relation. The direct experimental evidence for wave elements cannot be directly established at the present scientific testing cap ability because the temperature difference of two molecule groups adjoining each other in a flow is infinitesimal. A series of “enlarged size” experiments are conducted involving the cooling tower water fouling to show the wave elements’ behaviors by tracing the molecules’ movement. The experimental study presents that the wave interface along the space and time dimensions simultaneously exists between two densities due to fluid motion. The experimental evidence and theoretical analysis support each other.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3