Analysis of the Unsteady Overtip Casing Heat Transfer in a High Speed Turbine

Author:

Lavagnoli S.1,Paniagua G.1,De Maesschalck C.1,Yasa T.2

Affiliation:

1. e-mail:

2. e-mail:  von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, Belgium

Abstract

In modern gas turbine engines, the rotor casing is vulnerable to thermal failures due to large unsteady heat fluxes. The rotor tip flow unsteadiness is induced by the periodic passage of the rotor blades, with an intensity dependent on the tip gap geometry. Hence, the understanding of the physics is of paramount importance to develop appropriate predictive tools and improve the cooling schemes. The present research aims at providing essential information on the flow conditions, which should serve to assess the relative impact of the overtip flow, tip gap magnitude, and work extraction processes on the casing thermal load. This paper presents simultaneous measurements of steady and unsteady heat transfer, pressure and rotor tip clearance in the casing of a transonic turbine stage. The research article was tested in a compression tube facility operating at engine representative conditions (vane Mach number 1.07, vane outlet Reynolds number 1.3 × 106, pressure ratio is 2.92, at 6790 rpm). The rotor blade geometry has a flat tip with a nominal tip clearance of about 0.4% of blade height. The heat transfer, pressure, and tip clearance data were obtained at three circumferential positions around the turbine casing. The heat flux was monitored using a single-layered thin film gauge able to resolve with high fidelity the wall temperature fluctuations. The heat flux sensor was mounted on a probe equipped with a heating device that allows varying the wall temperature. A series of experiments was performed at different heating rates to derive the local adiabatic wall temperature and the adiabatic convective heat transfer coefficient. A high bandwidth capacitive sensor provided the instantaneous value of the single blade tip clearance. A simple zero-dimensional model has been proved effective to predict the local flow temperature while the rotor spins up prior to the test, and estimate the overtip flow temperature during a test.

Publisher

ASME International

Subject

Mechanical Engineering

Reference29 articles.

1. Thermal-Mechanical Design Factors Affecting Turbine Blade Tip Clearance,2004

2. Heat Transfer Near Turbine Nozzle Endwall;Ann. NY Acad. Sci.,2001

3. Turbine Shroud Durability Analysis Using Time Unsteady CFD and Si-C Testing,2011

4. A Review of Turbine Blade Tip Heat Transfer in Gas Turbine Systems;Ann. N.Y. Acad. Sci.,2001

5. Flow and Heat Transfer In Turbine Tip Gaps;ASME J. Turbomach.,1989

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3