Multidisciplinary Optimization of a Turbocharger Radial Turbine

Author:

Mueller Lasse1,Alsalihi Zuheyr1,Verstraete Tom2

Affiliation:

1. e-mail:

2. e-mail:  von Karman Institute for Fluid Dynamics, Turbomachinery and Propulsion Department, 1640 Sint-Genesius-Rode, Belgium

Abstract

This paper presents a multidisciplinary design optimization of a turbocharger radial turbine for automotive applications with the aim to improve two major manufacturer requirements: the total-to-static efficiency and the moment of inertia of the radial turbine impeller. The search for the best design is constrained by mechanical stress limitations, by the mass flow and power, and by aerodynamic constraints related to the isentropic Mach number distribution on the rotor blade. The optimization of the radial turbine is performed with a two-level optimization algorithm developed at the von Karman Institute for Fluid Dynamics. The system makes use of a differential evolution algorithm, an artificial neural network (ANN), and a database as a compromise between accuracy and computational cost. The ANN performance predictions are periodically validated by means of accurate steady state 3D Navier-Stokes and centrifugal stress computations. The results show that it is possible to improve the efficiency and the moment of inertia only in a few numbers of iterations while limiting the stresses to a maximum value. Based on the large number of evaluated designs during the optimization, this paper provides design recommendations of a turbocharger radial turbine at least for a good preliminary design.

Publisher

ASME International

Subject

Mechanical Engineering

Reference24 articles.

1. Radial Inflow Turbines,1975

2. Computer Program for Design Analysis of Radial Inflow Turbines,1976

3. The Preliminary Design of Radial Inflow Turbines;J. Turbomach.,1990

4. Analytical Optimization Design of Radial and Mixed Flow Turbines;J. Power Energy,1992

5. The Aerodynamic Loading of Radial Mixed-Flow Turbines;J. Mech. Sci.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3