Dynamic Response Analysis of Balance Drum Labyrinth Seal Groove Geometries Optimized for Minimum Leakage1

Author:

Untaroiu Alexandrina1,Morgan Neal2,Hayrapetian Vahe3,Schiavello Bruno4

Affiliation:

1. Laboratory for Turbomachinery and Components, Department of Biomedical Engineering and Mechanics, Virginia Tech, 495 Old Turner Street, Blacksburg, VA 24061 e-mail:

2. Rotating Machinery and Controls (ROMAC) Laboratory, Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22903

3. Flowserve Corporation, Vernon, CA 90058

4. Flowserve Corporation, Bethlehem, PA 18017

Abstract

Annular labyrinth seals often have a destabilizing effect on pump rotordynamics due to the large cross-coupled forces generated when the fluid is squeezed by an oscillating rotor. In this study, several novel groove geometries are investigated for their effect on the rotordynamic coefficients of the labyrinth seal. The groove cavity geometry of a baseline 267 mm balance drum labyrinth seal with a clearance of 0.305 mm and 20 equally spaced groove cavities was optimized for minimum leakage. From the pool of possible groove designs analyzed, nine test cases were selected for maximum or minimum leakage and for a variety of groove cavity shapes. The rotordynamic coefficients were calculated for these cases using a hybrid computational fluid dynamics (CFD) bulk-flow method. The rotordynamic coefficients obtained by this method were then used with a rotordynamic model of the entire pump to determine the overall stability. Results show that labyrinth seal’s groove shape can be optimized to generate lower leakage rates, while the effects on dynamic properties are only minimally changed. If the seal dynamic response needs to be modified in addition to targeting a lower leakage rate, for instance, to exhibit increased damping values, then the leakage rate and the damping coefficient need to be set as objective functions in the optimization loop.

Publisher

ASME International

Subject

General Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3