Redesign of a Low Speed Turbine Stage Using a New Viscous Inverse Design Method

Author:

Roidl Benedikt1,Ghaly Wahid1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Concordia University, 1455 de Maisonneuve, West, Montreal, QC H3G 1M8, Canada

Abstract

The midspan section of a low speed subsonic turbine stage that is built and tested at DFVLR, Cologne, is redesigned using a new inverse blade design method, where the blade walls move with a virtual velocity distribution derived from the difference between the current and target pressure distributions on the blade surfaces. This new inverse method is fully consistent with the viscous flow assumption and is implemented into the time-accurate solution of the Reynolds-averaged Navier–Stokes equations. An algebraic Baldwin–Lomax turbulence model is used for turbulence closure. The mixing plane approach is used to couple the stator and rotor regions. The computational fluid dynamics (CFD) analysis formulation is first assessed against the turbine stage experimental data. The inverse formulation that is implemented in the same CFD code is assessed for its robustness and merits. The inverse design method is then used to study the effect of the rotor pressure loading on the blade shape and stage performance. It is also used to simultaneously redesign both stator and rotor blades for improved stage performance. The results show that by carefully tailoring the target pressure loading on both blade rows, improvement can be achieved in the stage performance.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3