Dynamic Stress Analysis on Barrel Considering the Radial Effect of Propellant Gas Flow

Author:

Yu Qingbo1,Yang Guolai1

Affiliation:

1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China e-mail:

Abstract

The stress response of an artillery barrel when fired is principally due to loading from gas pressure and contact force with the projectile. This paper reports a research project in which a dynamic model of a barrel and a projectile was established in order to investigate the stress response of an artillery barrel. Calculations of propellant gas pressure, in part determined by the position of the moving projectile, were carried out using user-defined subroutines developed in the abaqus/explicit software. Numerical simulations of the dynamic loading process of the barrel were carried out to examine the radial effects of gas pressures. Using this methodology, the evolution of barrel stress distributions was simulated, providing a visualized representation of the barrel's dynamic response. The calculated dynamic stress due to projectile contact alone can reach a peak value of 181 MPa, reflecting the significant effect of contact force on the barrel's dynamic response. Following this, the effect of propellant combustion on the dynamic response was explored, and the results obtained showed that higher initial temperatures produced more pronounced dynamic responses. Moreover, significant differences in stress distributions computed for the barrel revealed deficiencies in the static strength theory for evaluating the operating conditions, due in part to the omission of contact force and other dynamic effects. This paper proposes an alternative investigative approach for evaluating the dynamic stress response of barrels during the initial phases of the ballistics process, and provides information that should lead to updates and improvements of barrel strength theory, ultimately leading to better predictions of firing reliability and operator safety.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference20 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3