Affiliation:
1. Department of Mechanical Engineering, University of Leeds, Leeds, England
Abstract
The boundary layer simplification of the Navier-Stokes equations for hydrodynamically developing laminar flow with constant physical properties in the entrance region of concentric annuli with rotating inner walls have been numerically solved using a simple linearized finite-difference scheme. Additional results to those existing in the literature by Martin and Payne [1–2] will be presented here. An advantage of the analysis used in this paper is that it does not solve for the stream function and vorticity, but predicts the development of tangential, axial and radial velocity profiles directly, thus avoiding numerical differentiation. Results for the development of these velocity profiles, pressure drop and friction factor are presented for five annuli radii ratios (0.3, 0.5, 0.674, 0.727 and 0.90) at various values of the parameter Re2/Ta. The paper may be considered as a direct comparison between the boundary layer solution and the complete solution of the Navier-Stokes equations [1–2] for that special case.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献