Biomimetics: Advancing Man-Made Materials Through Guidance From Nature - An Update

Author:

Srinivasan A. V.1,Haritos G. K.2,Hedberg F. L.3,Jones W. F.3

Affiliation:

1. Worcester Polytechnic Institute, Worcester MA 01609-2280

2. Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson Air Force Base OH 45433-7765

3. Air Force Office of Scientific Research, Bolling Air Force Base, Washington DC 20332-6448

Abstract

An update is provided on progress resulting from research programs supported by the Air Force Office of Scientific Research (AFOSR) in biomimetics. The goal of these programs remains constant: to obtain significant improvements in aerospace materials and systems through the understanding and description of the evolutionarily-optimized structure and function of biological systems. The programs fall into three general categories: Biomimetic Materials Design, Biomimetic Processing, and Biomimetic Precision Sensing. Biomimetic material design efforts have focused on new concepts for the design of advanced composites with optimized mechanical properties to weight ratios, by studying the constituent properties, percentage, distribution, morphology, and contribution in biological materials. Types of biological materials under AFOSR-funded study include compact bone, tendon, and mollusk shells. Biomimetic processing programs have addressed biopolymer-mediated growth mechanisms of inorganic crystals with potential for highly selective control of electro-optical and electromagnetic properties, and also explored porous proteins as templates for nanolithography. Biomimetic precision sensing programs have addressed receptor composition and transduction mechanisms for auditory sensing in cochlea, and are most recently investigating receptor composition and transduction mechanisms for infrared sensing in snakes. Future considerations for research programs include better understanding of mechanisms involved in growth of biological materials in order to understand, describe, and more effectively mimic the complexities of their composition.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3