Robust Fixed-Time Integral Sliding Mode Control of a Nonlinear Hydraulic Turbine Regulating System

Author:

Huang Sunhua1,Wang Jie1

Affiliation:

1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Abstract The hydraulic turbine regulating system (HTRS) plays an important role in the safe and stable operation of hydropower stations. In this paper, a fixed-time integral sliding mode controller (FTISMC) is designed to make the nonlinear HTRS with disturbances stable in a fixed time. The HTRS is a highly complex, strongly coupled, nonlinear nonminimum phase system, which can ensure the frequency and rotor angle of generator stability by adjusting the guide vane opening. In order to decouple the nonlinear HTRS, the input/output feedback linearization is applied to establish the relationship between the control input and the output of the HTRS. Based on sliding mode control (SMC) theory and fixed-time stability theory, FTISMC is proposed to stabilize the HTRS in a fixed time. Compared with the finite time control method (FTCM), the convergence time of nonlinear HTRS under FTISMC is independent of initial conditions and can be exactly estimated. Meanwhile, the integral sliding surface can avoid singularity, thus eliminating the chattering phenomenon. Finally, the numerical simulation is implemented to demonstrate the superior performances of the proposed FTISMC than the existing PID, SMC, and FTMC.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference30 articles.

1. Hydropower Status Report;International Hydropower Association,2019

2. Fast facts about hydropower;International Hydropower Association,2019

3. Robust Fixed-Time Sliding Mode Control for Fractional-Order Nonlinear Hydro-Turbine Governing System;Renewable Energy,2019

4. Fractional Order Sliding Mode Based Direct Power Control of Grid-Connected DFIG;IEEE Trans. Power Syst.,2018

5. Mathematical Model and Parametric Uncertainty Analysis of a Hydraulic Generating System;Renewable Energy,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3