Aerodynamic Design and Testing of an Imbedded Forward Swept Rotor in a Two-Stage Transonic Fan

Author:

Wadia A. R.1,Niedermeier J. D.1,Szucs P. N.1,Cormier N. G.1,Crall D. W.1,Rabe D. C.2

Affiliation:

1. GE Aviation, Cincinnati, OH 45215 e-mail:

2. Universal Technology Corp., Dayton, OH 45432 e-mail:

Abstract

Previous experimental and analytical studies comparing the performance of transonic swept rotors in single and multistage fans have demonstrated the potential of large improvements in clean inlet performance and substantial improvements in fan sensitivity with inlet distortion with forward swept blading. A two-stage, low-aspect ratio transonic fan investigation was previously conducted in the Air Force’s Compressor Research Facility, in two builds on a back-to-back test basis, using a radial and a forward swept stage 1 blade. While the forward swept stage 1 blade configuration did demonstrate superior front stage efficiency and tolerance to inlet distortion, the common second stage among the two builds prevented the overall fan from showing clean inlet performance and stability benefits with the forward swept rotor 1. To address this measured overall performance shortfall, this paper reports on the design of a new second stage blade tested in the same two-stage fan rig with the forward swept stage 1 blade configuration. The new second stage blade was designed with forward sweep to improve efficiency and operability while replicating the baseline radial rotor 2’s aerodynamic design conditions within the same flow path. The design point requirements of the forward swept rotor 2 were selected to preserve the internal stage matching with the radially stacked rotor 2. As the new stage 2 blade had to fit within the existing radial rotor 2’s physical envelope, the new blade was designed with forward sweep through lean only, which proved to be quite challenging from a mechanical growth and deflection view point. The first attempt to run the fan rig with the new stage 2 blade resulted in a leading-edge tip rub during a part speed stall event. However, even with this unfortunate event, fan mapping test results with clean inlet from part speed to 97.5% design speed showed a significant improvement in overall fan efficiency and stall margin, validating the hypothesis that in the earlier tests stage 2 was indeed the limiting stage that prevented the fan from reaching its overall performance goals. Based on this experience and the test data acquired with unstable leading-edge tip rubs during stall deflections with forward swept airfoils leaned in the direction of rotation, a process was developed to determine the acceptability criteria of such blading.

Publisher

ASME International

Subject

Mechanical Engineering

Reference12 articles.

1. Inner Workings of Aerodynamic Sweep;Wadia;ASME J. Turbomach.,,1998

2. Control of Shock Structure and Secondary Flow Field Inside Transonic Compressor Rotors Through Aerodynamic Sweep;Hah,1998

3. The Effects of Lean and Sweep on Transonic Fan Performance: A Computational Study;Denton;Task Quarterly,2002

4. The Effects of Lean and Sweep on Transonic Fan Performance;Denton,2002

5. Effect of Forward Sweep in a Transonic Compressor Rotor;Passrucker;Proc. Inst. Mech. Eng., Part A,2003

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3