Thermodynamic Analysis of a Novel Space Heating System Featuring Hot Gas Water Technology

Author:

Reykers Robbe1,Keersmaekers Raf1,Ozalp Nesrin2,Collaert Johan3

Affiliation:

1. Thermal and Electrical Systems Research Laboratory (THELES), Cluster of Engineering Technology, Mechanical Engineering Department, KU Leuven, Sint-Katelijne-Waver 2860, Belgium e-mail:

2. Fellow ASME Thermal and Electrical Systems Research Laboratory (THELES), Cluster of Engineering Technology, Mechanical Engineering Department, KU Leuven, Sint-Katelijne-Waver 2860, Belgium e-mail:

3. GeoTherma, Ambachtenstraat 14A, Lubbeek 3210, Belgium e-mail:

Abstract

Low operating cost, comfort, sustainability, and environmental footprint are the key elements of robust space heating (SH) system. In quest for higher efficiencies, it is not always possible to meet all of these demands where environmental footprint often gets secondary attention. This paper presents a novel SH system which is capable of meeting all of the aforementioned elements while simultaneously proving SH and domestic hot water (DHW). The system comprises a geothermal sourced heat pump (HP) featuring “hot gas water” (HGW) technology which delivers higher efficiency. This paper gives a thorough thermodynamic assessment of the system covering component based first and second law analysis and provides test results based on two case studies at a house (W10/W35) and a renovated building (W10/W45). The results show that a theoretical efficiency gain by 11.02% is achievable where the source temperature is 10 °C and the water temperature for floor heating is 35 °C. For the same system, with the same source temperature but with a supply temperature of 45 °C for SH, an efficiency gain of 17.91% is achievable. From experimental testing of the system using the test stand at GeoTherma, 4.73% efficiency gain with water temperature of 35 °C and 3.59% efficiency gain with water temperature of 45 °C were obtained. Economic analysis results showed that savings of up to 10% on an annual basis is possible with HGW technology installed in an average family house, whereas it gets 4.36% for a small hotel with a payback time period of about 9 yrs.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3