Stress-Blended Eddy Simulation of Coherent Unsteadiness in Pressure Side Film Cooling Applied to a First Stage Turbine Vane

Author:

Ravelli Silvia1,Barigozzi Giovanna1

Affiliation:

1. Department of Engineering and Applied Sciences, University of Bergamo, Marconi Street 5, Dalmine 24044, Italy e-mail:

Abstract

Within the framework of scale resolving simulation techniques, this paper considers the application of the stress-blended eddy simulation (SBES) model to pressure side (PS) film cooling in a high-pressure turbine nozzle guide vane. The cooling geometry exhibits two rows of film cooling holes and a trailing edge cutback, fed by the same plenum chamber. The blowing conditions investigated were in the range of coolant-to-mainstream mass flow ratio (MFR) from 1% to 2%. The flow regime resembles that in a real engine (exit isentropic Mach number of Ma2is = 0.6), but also low speed conditions (Ma2is = 0.2) were considered for comparison purposes. The predicted results were validated with measurements of surface adiabatic effectiveness and instantaneous off-wall visualizations of the flow field downstream of cooling holes and cutback slot. The focus is on SBES ability of developing shear layer structures, because of their strong influence on velocity field, entrainment mechanisms and, thus, vane surface temperature. Special attention has been paid to the development and dynamics of coherent unsteadiness, since measured values of shedding frequency were also available for validation. SBES provided significant improvement in capturing the unsteady physics of cooling jet-mainstream interaction. The effects of changes in flow regime and blowing conditions on vortex structures were well predicted along the cutback surface. As regards the cooling holes, the high speed condition made it difficult to match the experimental Kelvin–Helmholtz breakdown in the shear layer, in the case of high velocity jets.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference43 articles.

1. Delivering Better Power: The Role of Simulation in Reducing the Environmental Impact of Aircraft Engines;Phil. Trans. R. Soc.,2014

2. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences,2014

3. On the Role and Challenges of CFD in the Aerospace Industry;Aeronaut. J.,2016

4. Large Eddy Simulation for Predicting Turbulent Heat Transfer in Gas Turbines;Phil. Trans. R. Soc.,2014

5. Best Practice: Scale-Resolving Simulations in ANSYS CFD, Version 2.00,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3