Affiliation:
1. Biomedical Science Department, General Motors Research Laboratories, Warren, Mich. 48090
Abstract
The effects of impact timing during the cardiac cycle on the sensitivity of the heart to impact-induced rupture was investigated in an open-chest animal model. Direct mechanical impacts were applied to two adjacent sites on the exposed left ventricular surface at the end of systole or diastole. Impacts at 5 m/s and a contact stroke of 5 cm at the end of systole resulted in no cardiac rupture in seven animals, whereas similar impacts at the end of diastole resulted in six cardiac ruptures. Direct impact at 15 m/s and a contact stroke of 2 cm at the end of either systole or diastole resulted in perforationlike cardiac rupture in all attempts. At low-impact velocity the heart was observed in high-speed movie to bounce away from the impact interface during a systolic impact, but deform around the impactor during a diastolic impact. The heart generally remained motionless during the downward impact stroke at high-impact velocity in either a systolic or diastolic impact. The lower ventricular pressure, reduced muscle stiffness, thinner myocardial wall and larger mass of the filled ventricle probably contributed to a greater sensitivity of the heart to rupture in diastole at low-impact velocity. However, the same factors had no role at high-impact velocity.
Subject
Physiology (medical),Biomedical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献