Affiliation:
1. Fluid Mechanics Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Mass 02139
Abstract
Filling of a thin-walled, highly compliant tube in a partially collapsed condition is studied. The theory, based on one-dimensional flow, takes account of friction, longitudinal tension, and the highly nonlinear pressure-area law for the tube. Various aspects of filling behavior are revealed by alternative calculations using: (i) the method of characteristics; (ii) numerical integration of the continuity, momentum, and tube-law equations; and (iii) a crude but simple lumped-element capacitance-inertance-resistance model. Varied phenomena appear. At high Reynolds number, these include dispersive wave trains associated with circumferential bending stiffness and longitudinal tension, nonlinear changes of wave form, development of highly asymmetrical wave reflections, and sloshing. At low Reynolds number, the area changes with time in a diffusivelike manner. The experiments exhibited the dispersive phenomena predicted by the theory.
Subject
Physiology (medical),Biomedical Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献