Operational Performance of a 5-kW Solar Chemical Reactor for the Co-Production of Zinc and Syngas

Author:

Kra¨upl Stefan1,Steinfeld Aldo2

Affiliation:

1. Solar Process Technology, Paul Scherrer Institute, CH-5232 Villigen, Switzerland

2. Department of Mechanical and Process Engineering, ETH-Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zurich, Switzerland

Abstract

We report on the improved operational performance and energy conversion efficiency of a 5-kW solar chemical reactor for the combined ZnO-reduction and CH4-reforming SynMet process. The reactor features a pulsed vortex flow of CH4 laden with ZnO particles, which is confined to a cavity-receiver and directly exposed to solar power fluxes exceeding 2000kW/m2. Reactants were continuously fed at ambient temperature, heated by direct irradiation to above 1350°K, and converted to Zn and syngas during mean residence times of 10 seconds. Typical chemical conversion attained was 100% for ZnO and up to 96% for CH4. The thermal efficiency was in the 15–22% range; the exergy efficiency reached up to 7.7% and may be increased by recovering the sensible and latent heat of the products. The SynMet process avoids emissions of greenhouse-gases and other pollutant derived from the traditional fossil-fuel-based production of zinc and syngas, and further converts solar energy into storable and transportable chemical fuels.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3