Statistical Extrapolation Methods for Estimating Wind Turbine Extreme Loads

Author:

Ragan Patrick1,Manuel Lance1

Affiliation:

1. Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712

Abstract

With the introduction of the third edition of the International Electrotechnical Commission (IEC) Standard 61400-1, designers of wind turbines are now explicitly required, in one of the prescribed load cases, to use statistical extrapolation techniques to determine nominal design loads. In this study, we use field data from a utility-scale 1.5MW turbine sited in Lamar, Colorado to compare the performance of several alternative techniques for statistical extrapolation of rotor and tower loads—these include the method of global maxima, the peak-over-threshold method, and a four-moment process model approach. Using each of these three options, 50-year return loads are estimated for the selected wind turbine. We conclude that the peak-over-threshold method is the superior approach, and we examine important details intrinsic to this method, including selection of the level of the threshold to be employed, the parametric distribution used in fitting, and the assumption of statistical independence between successive peaks. While we are primarily interested in the prediction of extreme loads, we are also interested in assessing the uncertainty in our predictions as a function of the amount of data used. Towards this end, we first obtain estimates of extreme loads associated with target reliability levels by making use of all of the data available, and then we obtain similar estimates using only subsets of the data. From these separate estimates, conclusions are made regarding what constitutes a sufficient amount of data upon which to base a statistical extrapolation. While this study makes use of field data in addressing statistical load extrapolation issues, the findings should also be useful in simulation-based attempts at deriving wind turbine design load levels where similar questions regarding extrapolation techniques, distribution choices, and amount of data needed are just as relevant.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3