Static Load Performance of a Water-Lubricated Hydrostatic Thrust Bearing

Author:

Rohmer Michael1,San Andrés Luis2,Wilkinson Scott3

Affiliation:

1. Machinery Engineer, ExxonMobil Research & Engineering, Spring, TX 77389 e-mail:

2. Fellow ASME Mechanical Engineering Department, Texas A&M University, College Station, TX 77843 e-mail:

3. Mechanical Engineering Department, Texas A&M University, College Station, TX 77843 e-mail:

Abstract

In rotating equipment, thrust bearings aid to balance axial loads and control shaft position. In turbomachinery, axial loads depend on shaft speed and pressure rise/drop on the impellers. This paper details a water-lubricated test rig for measurement of the performance of hydrostatic thrust bearings (HTBs). The rig contains two water-lubricated HTBs (105 mm outer diameter (OD)), one is the test bearing and the other a slave bearing. Both bearings face the outer side of thrust collars of a rotor. The paper shows measurements of HTB axial clearance, flow rate, and recess pressure for operation with increasing static load (max. 1.4 bar) and supply pressure (max. 4.14 bar) at a rotor speed of 3 krpm (12 m/s OD speed). Severe angular misalignment, static and dynamic, of the bearing surface against its collar persisted and affected all measurements. The HTB axial clearance increases as the supply pressure increases and decreases quickly as the applied load increases. The reduction in clearance increases the flow resistance across the film lands, thus reducing the through flow rate with an increase in recess pressure. In addition, an estimated bearing axial stiffness increases as the operating clearance decreases and as the supply pressure increases. Predictions from a bulk flow model qualitatively agree with the measurements. Alas they are not accurate enough. The differences likely stem from the inordinate tilts (static and dynamic) as well as the flow condition. The test HTB operates in a flow regime that spans from laminar to incipient turbulent. Quantification of misalignment at all operating conditions is presently a routine practice during operation of the test rig.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3