Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection

Author:

Reichel Thoralf G.1,Terhaar Steffen2,Paschereit Oliver2

Affiliation:

1. Chair of Fluid Dynamics, Hermann-Föttinger-Institut, Technische Universität Berlin, Müller-Breslau-Str. 8, Berlin 10623, Germany e-mail:

2. Chair of Fluid Dynamics, Hermann-Föttinger-Institut, Technische Universität Berlin, Müller-Breslau-Str. 8, Berlin 10623, Germany

Abstract

Since lean premixed combustion allows for fuel-efficiency and low emissions, it is nowadays state of the art in stationary gas turbines. In the long term, it is also a promising approach for aero engines, when safety issues like lean blowout (LBO) and flame flashback in the premixer can be overcome. While for the use of hydrogen the LBO limits are extended, the flashback propensity is increased. Thus, axial air injection is applied in order to eliminate flashback in a swirl-stabilized combustor burning premixed hydrogen. Axial injection constitutes a nonswirling jet on the central axis of the radial swirl generator which influences the vortex breakdown (VB) position. In the present work, changes in the flow field and their impact on flashback limits of a model combustor are evaluated. First, a parametric study is conducted under isothermal test conditions in a water tunnel employing particle image velocimetry (PIV). The varied parameters are the amount of axially injected air and swirl number. Subsequently, flashback safety is evaluated in the presence of axial air injection in an atmospheric combustor test rig and a stability map is recorded. The flame structure is measured using high-speed OH* chemiluminescence imaging. Simultaneous high-speed PIV measurements of the reacting flow provide insight in the time-resolved reacting flow field and indicate the flame location by evaluating the Mie scattering of the raw PIV images by means of the qualitative light sheet (QLS) technique. The isothermal tests identify the potential of axial air injection to overcome the axial velocity deficits at the nozzle outlet, which is considered crucial in order to provide flashback safety. This effect of axial air injection is shown to prevail in the presence of a flame. Generally, flashback safety is shown to benefit from an elevated amount of axial air injection and a lower swirl number. Note that the latter also leads to increased NOx emissions, while axial air injection does not. Additionally, fuel momentum is indicated to positively influence flashback resistance, although based on a different mechanism, an explanation of which is suggested. In summary, flashback-proof operation of the burner with a high amount of axial air injection is achieved on the whole operating range of the test rig at inlet temperatures of 620 K and up to stoichiometric conditions while maintaining single digit NOx emissions below a flame temperature of 2000 K.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference29 articles.

1. Potential Use of Hydrogen in Air Propulsion,2003

2. An Approach to the Use of Hydrogen for Commercial Aircraft Engines;Proc. Inst. Mech. Eng., Part G.,2005

3. Design of Aero Gas Turbines Using Hydrogen;ASME J. Eng. Gas Turbines Power,2006

4. Yin, F., Rao, A. G., and van Buijtenen, J., 2013, “Performance Cycle Analysis for a Multi-Fuel Hybrid Engine,” ASME Paper No. GT2013-94601.10.1115/GT2013-94601

5. Basic Thermodynamics of FLOXCOM, the Low-NOx Gas Turbines Adiabatic Combustor;Appl. Therm. Eng.,2004

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3