Axisymmetric Vibrations of a Piezoelectric Spherical Shell Submerged in a Compressible Viscous Fluid Medium

Author:

Hu Juxi1,Qiu Zhiping2,Su Tsung-Chow3

Affiliation:

1. Shanghai Marine Equipment Research Institute, Hengshan Road #10, Shanghai 200031, P.R. China

2. Institute of Solid Mechanics, Beijing University of Aeronautics and Astronautics, Xueyuan Road #37 Beijing 100191, P.R. China

3. Department of Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431

Abstract

Abstract Axisymmetric vibrations of a hollow piezoelectric sphere submerged in a compressible viscous fluid medium are investigated. The piezoelectric sphere is radially polarized. The differential equations governing the shell motion are obtained by the use of Hamilton’s principle. Based on the classical bending theory of shells, it is shown that all the piezoelectric contributions can be included in the in vacuo natural frequencies and their corresponding mode shapes. As such, the previous theory on elastic shell vibration becomes readily extendable. The flow field, determined by the boundary layer theory, is coupled to the shell motion through no-slip and no-penetrating conditions. It is found that the contribution of the piezoelectric parameters in the thin shell’s free vibration is of small order and is negligible. Natural frequencies and their associated vibration characteristics are numerically obtained and presented for a Polyvinglindene fluoride (PVDF) shell submerged in water. Dynamic responses of a submerged piezoelectric sherical shell, and the associated radiation of sound are investigated. The oscillations are harmonically driven by an axisymmetrically applied electric potential difference across the surface of the shell. The vibrational, fluid loading, and energy flow characteristics are derived and evaluated for a PVDF shell submerged in water. The essential feature of the modal response is determined by various critical frequencies, such as resonant frequencies and vibration-absorbing frequencies. Viscous effect is found noticeable in several cases.

Publisher

ASME International

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3