Transition of Bubbly Flow in Vertical Tubes: Effect of Bubble Size and Tube Diameter

Author:

Das A. K.1,Das P. K.1,Thome J. R.2

Affiliation:

1. Department of Mechanical Engineering, IIT Kharagpur, 721302, India

2. LCTM, EPFL, Lausanne CH-1015, Switzerland

Abstract

In a companion paper (“Modelling Bubbly Flow by Population Balance Technique Part I: Axial Flow Development and Its Transitions,” ASME J. Fluids Eng), a two fluid model along with a multiclass population balance technique has been used to find out comprehensive criteria for the transition from bubbly to slug flow, primarily through a study of axial flow development. Using the same basic model the transition mechanism has been investigated in the present paper covering a wide range of process parameters. Though the dominating rate of bubble coalescence during the axial development of the flow acts as the main cause for the transition to slug flow, the simultaneous transformation of the radial voidage pattern cannot be overlooked. Appearance of core, intermediate, wall, and two peaks are observed in the radial voidage distribution depending on the phase superficial velocities. A map has been developed indicating the boundaries of the above subregimes. It has been observed that not only the size of the bubbles entering the inlet plane but also the size distribution (monodispersion or bidispersion) changes the voidage peak and shifts the transition boundary. It is interesting to note that the bubbly flow only with a core peak void distribution transforms into slug flow with a change in the operating parameters. Transition boundary is also observed to shift with a change in the tube diameter. The simulation results have been compared with experimental data taken from different sources and very good agreements have been noted.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3