Damage-Mitigating Control of Mechanical Systems: Part II—Formulation of an Optimal Policy and Simulation

Author:

Ray Asok1,Wu Min-Kuang1,Carpino Marc1,Lorenzo Carl F.2

Affiliation:

1. Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802

2. NASA Lewis Research Center, Cleveland, OH 44135

Abstract

The objective of damage-mitigating control introduced in the first part of this two-part paper is to achieve high performance without overstraining the mechanical structures. The major benefit is an increase in the functional life of critical plant components along with enhanced safety, operational reliability, and availability. Specifically, a methodology for modeling fatigue damage has been developed as an augmentation to control and diagnostics of complex dynamic processes such as advanced aircraft, spacecraft, and power plants. In this paper which is the second part, an optimal control policy is formulated via nonlinear programming under specified constraints of the damage rate and accumulated damage. The results of simulation experiments for upthrust transient operations of a reusable rocket engine are presented to demonstrate efficacy of the damage-mitigating control concept.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Load-Sharing With Degradation Management in a Compressor Station;IEEE Transactions on Automation Science and Engineering;2024-01

2. A survey of models of degradation for control applications;Annual Reviews in Control;2020

3. Intelligent Life-Extending Controls for Aircraft Engines;AIAA 1st Intelligent Systems Technical Conference;2004-06-19

4. Load Regulation of Power Plants;Wiley Encyclopedia of Electrical and Electronics Engineering;1999-12-27

5. Integrated prognostics, maintenance and life-extending control of continuous-time production processes;Computer-aided Maintenance;1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3