Interlaminar Toughening of Fiber Reinforced Polymers by Synergistic Modification of Resin and Fiber

Author:

Bian Dakai1,Tsui Jason C.1,Kydd Robert R.1,Shim D. J.2,Jones Marshall2,Yao Y. Lawrence1

Affiliation:

1. Columbia University, New York, NY

2. GE Global Research, Niskayuna, NY

Abstract

The synergistic effect of combining different modification methods was investigated in this study to improve the interlaminar toughness and delamination resistance of fiber reinforced polymers (FRP). Epoxy-compatible polysulfone (PSU) was end-capped with epoxide group through functionalization, and the fiber surface was chemically grafted with amino functional group to form a micron-size rough surface. Consequently, the long chain of PSU entangles into crosslinked thermoset epoxy network, additionally, epoxide group on PSU further improves the bonding through chemical connection to the epoxy network and amino group on fiber surface. The combined modification methods can generate both strong physical and chemical bonding. The feasibility of using this method in vacuum assisted resin transfer molding was determined by rheometer. The impact of formed chemical bonds on the crosslinking density was examined through glass transition temperatures. The chemical modifications were characterized by Raman Spectroscopy to determine the chemical structures. Synergistic effect of the modification was established by Mode I and Mode II fracture tests which quantify the improvement on composites delamination resistance and toughness. The mechanism of synergy was explained based on the fracture mode and interaction between the modification methods. Finally, Numerical simulation was used to compare samples with and without modifications. The experiment results showed that synergy is achieved at low concentration of modified PSU because the formed chemical bonds compensate the effect of low crosslinking density and interact with the modified fiber.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3