Real-Time Identification of Incipient Surface Morphology Variations in Ultraprecision Machining Process

Author:

Rao Prahalad1,Bukkapatnam Satish2,Beyca Omer2,Kong Zhenyu (James)1,Komanduri Ranga3

Affiliation:

1. Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 e-mail:

2. School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078 e-mail:

3. School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078 e-mail:

Abstract

Real-time monitoring and control of surface morphology variations in their incipient stages are vital for assuring nanometric range finish in the ultraprecision machining (UPM) process. A real-time monitoring approach, based on predicting and updating the process states from sensor signals (using advanced neural networks (NNs) and Bayesian analysis) is reported for detecting the incipient surface variations in UPM. An ultraprecision diamond turning machine is instrumented with three miniature accelerometers, a three-axis piezoelectric dynamometer, and an acoustic emission (AE) sensor for process monitoring. The machine tool is used for face-turning aluminum 6061 discs to a surface finish (Ra) in the range of 15–25 nm. While the sensor signals (especially the vibration signal in the feed direction) are sensitive to surface variations, the extraneous noise from the environment, machine elements, and sensing system prevents direct use of raw signal patterns for early detection of surface variations. Also, nonlinear and time-varying nature of the process dynamics does not lend conventional statistical process monitoring techniques suitable for characterizing UPM-machined surfaces. Consequently, instead of just monitoring the raw sensor signal patterns, the nonlinear process dynamics wherefrom the signal evolves are more effectively captured using a recurrent predictor neural network (RPNN). The parameters of the RPNN (weights and biases) serve as the surrogates of the process states, which are updated in real-time, based on measured sensor signals using a Bayesian particle filter (PF) technique. We show that the PF-updated RPNN can effectively capture the complex signal evolution patterns. We use a mean-shift statistic, estimated from the PF-estimated surrogate states, to detect surface variation-induced changes in the process dynamics. Experimental investigations show that variations in surface characteristics can be detected within 15 ms of their inception using the present approach, as opposed to 30 ms or higher with the conventional statistical change detection methods tested.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3