Affiliation:
1. Department of Mechanical Engineering, Ramco Institute of Technology, Rajapalayam 626117, Tamil Nadu, India e-mail:
2. Department of Mechanical Engineering, Bannari Amman Institute of Technology, Sathyamangalam 638401, Tamil Nadu, India e-mail:
Abstract
An attempt has been made to develop and study the properties and behavior of structure-based aluminum composite. Aluminum (AA6063)-based composites were fabricated by stir casting technique (also known as liquid metallurgy route) by varying weight percentage of metallic-based copper nitrate Cu (NO3)2 with fixed proposition of ceramic-based silicon nitride (Si3N4) reinforcement. The mechanical and corrosion properties and tribological behavior of composite were studied. Further, the sample microstructure and characterizations were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD) technique. The composite with fixed weight proportion of ceramic and higher metallic reinforced samples shows higher tensile strength, improved corrosion resistance, and higher hardness behavior. Due to higher hardness nature, the tribological properties of composite such as wear rate and coefficient of friction have been reduced. Moreover, the impact strength of composite decreased due to combination of ceramic and metallic reinforcement. In addition to the above study, design of experiment (DOE) was adopted to optimize the major wear test parameters such as percentage of reinforcement, applied load, sliding distance, and sliding speed. Finally, analysis of variance (ANOVA) was carried out to identify the most significant test parameter and its interaction affecting wear behavior and its coefficient of friction of composite sample.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献