Non-Darcy Flow Through Fibrous Porous Media

Author:

Beavers G. S.1,Sparrow E. M.2

Affiliation:

1. Department of Aerospace Engineering and Mechanics, School of Mechanical and Aerospace Engineering, University of Minnesota, Minneapolis, Minn.

2. Department of Mechanical Engineering, School of Mechanical and Aerospace Engineering, University of Minnesota, Minneapolis, Minn.

Abstract

Experiments are performed to explore the flow characteristics of porous media having the form of a latticework of metallic fibers. Five such media are investigated, four among which share the characteristic that there are no free fiber ends within the medium. The operating conditions of the experiments extend over a wide range of velocities greater than those for Darcy flow, but permeabilities deduced from the data are applicable to the Darcy regime. It is shown that for all the investigated media, the axial pressure gradient is representable as the sum of two terms, one linear in the velocity (viscous contribution) and the second quadratic in the velocity (inertia contribution). The flow-pressure characteristics for the structurally similar porous media are representable by a single dimensionless expression wherein the square root of the permeability is used as the characteristic dimension. Significant departures from Darcy’s law first occur at Reynolds numbers on the order of one; similar values of the Reynolds number are known to mark the termination of the regime of viscous unseparated flow about spheres and cylinders. This accord lends further support to the use of the square root of the permeability as the characteristic dimension.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3