Partial Dynamic State Synthesis by Use of Mass Parameters in a System Coupler Link

Author:

Elliott J. L.1,Tesar D.1,Matthew G. K.2

Affiliation:

1. Dept. of Mechanical Engineering, University of Florida, Gainesville, Fla.

2. Dept. of Mechanical Engineering, Vanderbilt University, Nashville, Tenn.

Abstract

One of the primary objectives of synthesis is the reduction of the number of controlling parameters facing the designer in the optimization phase of the design process while at the same time forcing the remaining parameters to generate solutions which are acceptable in some prescribed sense. In this paper, the four mass parameters m, k, u, v of any link moving in coplanar motion are used to meet specified torque (or energy) levels or specified shaking moment values for up to four positions of the system. The origin of these specifications for the synthesis procedure may be due to inertia in the rest of the system or due to a work function such as those generated by springs. The dimensions of the mechanism are considered to pre-exist or are due to an earlier motion synthesis stage of the design [5]. Springs may have been obtained by a synthesis procedure outlined in reference [6]. Finally, once the values of m, k, u, v for one link are met by means of procedures introduced here, they may then be used directly in shaking force criteria of Berkof and Lowen [2] to further balance the system or those in reference [3] for additional refinement. The total objective of this serial use of synthesis procedures is to minimize the number of independent design parameters while still retaining a set of solutions containing the global optimum in terms of some prescribed qualitative requirements. Some of these qualitative criteria were outlined in the very interesting and complete work [4] on characterization of the dynamic state of real machines by Artobolevskii and Loschchinin. The synthesis procedure is validated by a design example of a throwing mechanism. The object being thrown is specified in four finitely separated velocity states of an existing mechanism. The resulting dynamic response of the system meets these arbitrary specifications within an error of 0.05 percent.

Publisher

ASME International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic thermographic imaging method for quantifying dermal perfusion: potential and limitations;Medical & Biological Engineering & Computing;1989-09

2. Balancing of linkages—an update;Mechanism and Machine Theory;1983-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3