Design for Additive Manufacture of Fine Medical Instrumentation—DragonFlex Case Study

Author:

Jelínek Filip1,Breedveld Paul2

Affiliation:

1. Austrian Center for Medical Innovation and Technology, Viktor-Kaplan-Straße 2/1, Building A, Wiener Neustadt 2700, Austria e-mail:

2. Department of BioMechanical Engineering, Faculty Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft 2628 CD, The Netherlands e-mail:

Abstract

The recently popularized domain of additive manufacturing (AM) has much to offer to medical device development, especially to the growing field of minimally invasive surgery (MIS). With the advancements in AM materials, one could soon envision materializing not only the proofs of concept but also the final clinically approved instruments. DragonFlex—the world's first AM steerable MIS instrument prototype—was recently devised with the aim to follow this vision. Apart from the medical device design restrictions, several limitations of AM materials and processes had to be considered. The aim of this paper is to present these insights to those opting for this means of manufacture, serving as a helpful design and material guide. Over the course of its development, DragonFlex has gone through four design generations so far, each differing in the AM material and process used. Due to being a prototype of a MIS instrument of miniature dimensions, the printing processes were limited to stereolithography (SLA), as to achieve the best possible precision and accuracy. Each SLA process and material brought along specific advantages and disadvantages affecting the final printout quality, which needed to be compensated for either at the design stage, during, or after printing itself. The four DragonFlex generations were printed using the following SLA techniques and materials in this order: polymer jetting from Objet VeroBlue™; SLA Digital Light Processing™ (DLP) method from EnvisionTEC® NanoCure RCP30 and R5; conventional SLA from 3D Systems Accura® 60; and DLP based SLA process from a ceramic composite. The material choice and the printing orientation were found to influence the final printout accuracy and integrity of thin features, as well as material's postproduction behavior. The polymeric VeroBlue™ proved structurally sound, although suffering from undermined accuracy and requiring postprocessing, hence recommended for prototyping of upscaled designs of looser manufacturing tolerances or overdimensioned experimental setups. The NanoCure materials are capable of reaching the best accuracy requiring almost no postprocessing, thus ideal for prototyping small intricate features. Yet their mechanical functionality is undermined due to the high brittleness of RCP30 and high flexibility of R5. The transparent Accura® 60 was found to lose its strength and appeal due to high photosensitivity. Finally, the ceramic composite shows the best potential for medical use due to its biocompatibility and superior mechanical properties, yet one has to compensate for the material shrinkage already at the design stage.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference35 articles.

1. Laparoscopic Versus Open Colorectal Surgery: A Randomized Trial on Short-Term Outcome;Ann. Surg.,2002

2. Manipulation in Laparoscopic Surgery: Overview of Impeding Effects and Supporting Aids;J. Laparoendosc. Adv. Surg. Tech., Part A,1999

3. Design and Modeling of a Novel Flexible Surgical Instrument Applicable in Minimally Invasive Surgery;Int. J. Nat. Eng. Sci.,2010

4. A Mechanism for Dexterous End-Effector Placement During Minimally Invasive Surgery;ASME J. Mech. Des.,1999

5. Laparoscopic versus Open Surgery;Surg. Endosc.,2000

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3