Flame Structure and Combustion Capability of Non-Premixed Rifled Nozzles

Author:

San Kuo C.1,Hsu Hung J.,Yen Shun C.2

Affiliation:

1. Department of Aircraft Engineering, Air Force Institute of Technology, Kaohsiung, Taiwan 820, China e-mail:

2. Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung, Taiwan 202, China

Abstract

The target of this study is to promote combustion capability using a novel rifled nozzle which was set at the outlet of a conventional (unrifled) combustor. The rifled nozzle was utilized to adjust the flow swirling intensity behind the traditional combustor by changing the number of rifles. The rifle mechanism enhances the turbulence intensity and increases the mixing efficiency between the central-fuel jet and the annular swirled air-jet by modifying the momentum transmission. Specifically, direct photography, Schlieren photography, thermocouples, and a gas analyzer were utilized to document the flame behavior, peak temperature, temperature distribution, combustion capability, and gas-concentration distribution. The experimental results confirm that increasing the number of rifles and the annular swirling air-jet velocity (ua) improves the combustion capability. Five characteristic flame modes—jet-flame, flickering-flame, recirculated-flame, ring-flame and lifted-flame—were obtained using various annular air-jet and central fuel-jet velocities. The total combustion capability (Qtot) increases with the number of rifles and with increasing ua. The Qtot of a 12-rifled nozzle (swirling number (S) = 0.5119) is about 33% higher than that of an unrifled nozzle. In addition, the high swirling intensity induces the low nitric oxide (NO) concentration, and the maximum concentration of NO behind the 12-rifled nozzle (S = 0.5119) is 49% lower than that behind the unrifled nozzle.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3