Development and Performance Measurement of Oil-Free Turbocharger Supported on Gas Foil Bearings

Author:

Lee Yong-Bok1,Park Dong-Jin1,Kim Tae Ho1,Sim Kyuho1

Affiliation:

1. Korea Institute of Science and Technology, Energy Mechanics Center, Seoul, Republic of Korea

Abstract

This paper present the development of an oil-free turbocharger (TC) supported on gas foil bearings (GFBs) and its performance evaluation in a test rig driven by a diesel vehicle engine (EG). The rotor-bearing system was designed via a rotordynamic analysis with dynamic force coefficients derived from the analysis of the GFBs. The developed oil-free TC was designed using a hollow rotor with a radial turbine at one end and a compressor wheel at the other end, a center housing with journal and thrust GFBs, and turbine and compressor casings. Preliminary tests driven by pressurized shop air at room temperature demonstrated relatively stable operation up to a TC speed of 90,000 rpm, accompanied by a dominant synchronous motion of ∼20 μm and small subsynchronous motions of less than 2 μm at the higher end of the speed range. Under realistic operating conditions with a diesel vehicle engine at a maximum TC speed of 136,000 rpm and a maximum EG speed of 3140 rpm, EG and TC speeds and gas flow properties were measured. The measured time responses of the TC speed and the turbine inlet pressure demonstrated time delays of ∼3.9 and ∼1.3 s from that of the EG speed during consecutive stepwise EG speed changes, implying the GFB friction and rotor inertia led to time delays of ∼2.6 s. The measured pressures and temperatures showed trends following second-order polynomials against EG speed. Regarding TC efficiency, 4.3 kW of mechanical power was supplied by the turbine and 3.3 kW was consumed by the compressor at the top speed of 136,000 rpm, and the power loss reached 22% of the turbine power. Furthermore, the estimated GFB power losses from the GFB analysis were approximately 25% of the total power loss at higher speeds, indicating the remainder of the power loss resulted from heat transfer from the exhaust gas to the surrounding solid structures. Incidentally, as the TC speed was increased from 45,000 to 136,000 rpm, the estimated turbine inlet power increased from 19 to 79 kW, the compressor exit power increased from 7 to 26 kW, and the TC output mass flow rate from the compressor increased from 21 to 74 g/s. The average TC compressor exit power was estimated at ∼34% of the turbine inlet power over this range.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference27 articles.

1. Efficiency Analysis of Rapid Turbocharger With Alternative Bearing Design;Liazid;J. Mech. Des.

2. Performance and Durability of High Temperature Foil Air Bearings for Oil-Free Turbomachinery;DellaCorte;STLE Tribol. Trans.

3. The Role of Radial Clearance on the Performance of Foil Air Bearings;Radil;STLE Tribol. Trans.

4. Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications;DellaCorte

5. Heshmat, H., and Shapiro, W., 1981, “Compliant Journal Bearing With Angular Stiffness Gradient,” US Patent 4,262,975.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3