Modeling Shear Heating in Piston Skirts EHL Considering Different Viscosity Oils in Initial Engine Start Up

Author:

Adnan Qasim S.1,Afzaal Malik M.1,Ali Khan M.1,Mufti R. A.2

Affiliation:

1. College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Peshawar Road, 46000 Rawalpindi, Pakistan

2. School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), H-12, 44000 Islamabad, Pakistan

Abstract

A fully established elastohydrodynamic lubricating (EHL) film between the piston and the liner surfaces during normal engine operation minimizes piston slap and prevents adhesive wear. Wear cannot be prevented in the initial engine start up due to the absence of EHL film. During normal engine operation, thermal loading due to combustion dominates piston skirts lubrication. However, in a few initial cold engine start-up cycles, shear heating affects the lubricant viscosity and other characteristics considerably. This study models 2D piston skirts EHL by incorporating shear heating effects due to lubricant flow between the skirts and liner surfaces. The hydrodynamic and EHL film profiles are predicted by solving the 2D Reynolds equation and using the inverse solution technique, respectively. The temperature distribution within the oil film is given by using the 2D transient thermal energy equation with heat generated by viscous heating. The numerical analysis is based on an energy equation having adiabatic conduction and convective heat transfer with no source term effects. The study is extended to low and high viscosity grade engine oils to investigate the adverse effects of the rising temperatures on the load carrying capacity of such lubricants. Numerical simulations show that piston eccentricities, film thickness profiles, hydrodynamic and EHL pressures visibly change when using different viscosity grade engine lubricants. This study optimizes the viscosity-grade of an engine lubricant to minimize the adhesive wear of the piston skirts and cylinder liner at the time of initial engine start up.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference17 articles.

1. Takata, R. , 2001, “Effects of Lubricant Viscosity and Surface Texturing on Ring pack performance in I.C. Engines,” Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA.

2. Modeling of Lubricant Degradation and EHL;Kudish

3. Practical Application of Lubrication Models in Engines;Coy;Tribol. Trans.

4. A Generalized Reynolds Equation for Non-Newtonian TEHL;Yang;ASME J. Tribol.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3