A Comparison of the Structural Response of Clamped and Simply Supported Sandwich Beams With Aluminium Faces and a Metal Foam Core

Author:

Tagarielli V. L.1,Fleck N. A.1

Affiliation:

1. Engineering Department, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom

Abstract

Plastic collapse modes for clamped sandwich beams have been investigated experimentally and theoretically for the case of aluminium face sheets and a metal foam core. Three initial collapse mechanisms have been identified and explored with the aid of a collapse mechanism map. It is shown that the effect of clamped boundary conditions is to drive the deformation mechanism towards plastic stretching of the face sheets. Consequently, the ultimate strength and level of energy absorption of the sandwich beam are set by the face sheet ductility. Limit load analyses have been performed and simple analytical models have been developed in order to predict the postyield response of the sandwich beams; these predictions are validated by both experiments and finite elements simulations. It is shown experimentally that the ductility of aluminium face sheets is enhanced when the faces are bonded to a metal foam core. Finally, minimum weight configurations for clamped aluminium sandwich beams are obtained using the analytical formulas for sandwich strength, and the optimal designs are compared with those for sandwich beams with composite faces and a polymer foam core.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference11 articles.

1. The Topological Design of Multifunctional Cellular Material;Evans;Prog. Mater. Sci.

2. Fabrication and Structural Performance of Periodic Cellular Metal Sandwich Structures;Wadley;Compos. Sci. Technol.

3. The Plastic Collapse of Sandwich Beams With a Metallic Foam Core;Chen;Int. J. Mech. Sci.

4. Measurement and Analysis of the Structural Performance of Cellular Metal Sandwich Construction;Bart-Smith;Int. J. Mech. Sci.

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3