Experimental Investigation of Swirling Vortex Motion in Jets

Author:

Chigier N. A.1,Chervinsky A.1

Affiliation:

1. Department of Aeronautical Engineering, Israel Institute of Technology, Haifa, Israel

Abstract

Experiments have been carried out in a series of axisymmetric free turbulent jets with degrees of swirl covering the weak, moderate, and strong ranges, including the case of the onset of reversed flow in the central region of the jet. Measurements are reported of mean axial and swirl velocities, static pressure, and jet width at axial stations up to 15 orifice diameters. Mean velocity and pressure profiles are shown to be effectively similar from an axial distance of four diameters for weak and moderate swirl. For the case of strong swirl, a vortex is generated in the region close to the orifice resulting in a displacement of the axial velocity maximum from the jet axis. After a distance of 10 diameters, the influence of the vortex motion becomes small, and similarity of the profiles is obtained farther downstream. Experimentally determined profiles are described in terms of Gaussian error curves and third-order polynomials. Jet width and mass flow rates of entrained fluid are shown to increase according to the degree of swirl so that, for strong swirl, jet width and rate of entrainment are almost twice those for the nonswirling jet. Results of the decay of velocity and pressure along the axis are compared with values predicted by an approximate theory based on the integration of the Reynolds’ equations of motion. Good agreement is found between results and predictions, and a set of semi-empirical equations is provided from which a complete description of the mean velocity and pressure fields can be obtained for swirling jets.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 209 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3