Prediction of Squeal Instabilities of a Finite Element Model Automotive Brake With Uncertain Structural and Environmental Parameters With a Hybrid Surrogate Model

Author:

Denimal Enora12,Sinou Jean-Jacques13,Nacivet Samuel2

Affiliation:

1. Laboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS 5513, Ecole Centrale de Lyon, Ecully 69134, France;

2. Stellantis, Centre d'Expertise Métiers et Régions, 2-10 Boulevard de l’Europe, Poissy 78300, France

3. Institut Universitaire de France, Paris 75005, France

Abstract

Abstract This study focuses on the prediction of the stability behavior of an industrial automotive brake system under structural and environmental uncertainties. Uncertainties are modeled with a random distribution or an interval and are propagated with a hybrid surrogate model associating polynomial chaos and kriging. The objective is to create a surrogate model of each eigenvalue computed with the complex eigenvalue analysis (CEA). As the modes can be tracked only when unstable, the effective size of the training sets can become extremely small. Despite this limitation, it is shown the hybrid meta-model is still able to predict the stability of the brake system. Moreover, the hybrid meta-model gives a direct access to the mean and variance of the eigenvalues with respect to the design parameters without any additional Monte Carlo simulations (MCS). By considering different probability density function for the friction coefficient, it is shown it has a high influence on the stability and the latter should be accurately estimated.

Publisher

ASME International

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3