Affiliation:
1. Mechanical Engineering, Purdue University, West Lafayette 47907, IN;
2. von Karman Institute for Fluid Mechanics, Rhode-Saint-Genèse B-1640, Belgium e-mail:
Abstract
The aerothermal performance of the low-pressure turbine in unmanned aerial vehicles is significantly abated at high altitude, due to boundary layer separation. Different flow control strategies have been proposed to prevent boundary layer separation, such as dielectric barrier discharges (DBD) and synthetic jets. However, the optimization of the control approach requires a better characterization of the separated regions at transient conditions. The present investigation analyzes the behavior of separated flows, reporting the inception and separation length, allowing the development of efficient flow control methods under nontemporally uniform inlet conditions. The development of separated flows was investigated with numerical simulations including Unsteady Reynolds average Navier–Stokes (URANS) and large Eddy simulations (LES). The present research was performed on a wall-mounted hump, which imposes a pressure gradient representative of the suction side of low pressure turbines. Through sudden flow accelerations, we looked into the dynamic response of the shear layer detachment as it is modulated by the mean flow evolution. Similarly, we studied the behavior of the recirculation bubble under periodic disturbances imposed at various frequencies ranging from 10 to 500 Hz, at which the Reynolds number oscillates between 40,000 and 180,000. As a first step into the flow control, we added a slot to allow flow injection and ingestion upstream of the separation inception. Exploring the behavior of the separated region at different conditions, we defined the envelope for its periodic actuation. We found that by matching the actuator frequency with the frequency response of the separated region, the performance of the actuation is boosted.
Funder
Air Force Office of Scientific Research
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献