Transient Performance of Separated Flows: Characterization and Active Flow Control

Author:

Saavedra J.12,Paniagua G.12

Affiliation:

1. Mechanical Engineering, Purdue University, West Lafayette 47907, IN;

2. von Karman Institute for Fluid Mechanics, Rhode-Saint-Genèse B-1640, Belgium e-mail:

Abstract

The aerothermal performance of the low-pressure turbine in unmanned aerial vehicles is significantly abated at high altitude, due to boundary layer separation. Different flow control strategies have been proposed to prevent boundary layer separation, such as dielectric barrier discharges (DBD) and synthetic jets. However, the optimization of the control approach requires a better characterization of the separated regions at transient conditions. The present investigation analyzes the behavior of separated flows, reporting the inception and separation length, allowing the development of efficient flow control methods under nontemporally uniform inlet conditions. The development of separated flows was investigated with numerical simulations including Unsteady Reynolds average Navier–Stokes (URANS) and large Eddy simulations (LES). The present research was performed on a wall-mounted hump, which imposes a pressure gradient representative of the suction side of low pressure turbines. Through sudden flow accelerations, we looked into the dynamic response of the shear layer detachment as it is modulated by the mean flow evolution. Similarly, we studied the behavior of the recirculation bubble under periodic disturbances imposed at various frequencies ranging from 10 to 500 Hz, at which the Reynolds number oscillates between 40,000 and 180,000. As a first step into the flow control, we added a slot to allow flow injection and ingestion upstream of the separation inception. Exploring the behavior of the separated region at different conditions, we defined the envelope for its periodic actuation. We found that by matching the actuator frequency with the frequency response of the separated region, the performance of the actuation is boosted.

Funder

Air Force Office of Scientific Research

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3