Measurements of Heat Transfer Coefficients and Friction Factors in Rib-Roughened Channels Simulating Leading-Edge Cavities of a Modern Turbine Blade

Author:

Taslim M. E.1,Li T.1,Spring S. D.2

Affiliation:

1. Department of Mechanical Engineering, Northeastern University, Boston, MA 02115

2. GE Aircraft Engines, Lynn, MA 02190

Abstract

Leading edge cooling cavities in modern gas turbine blades play an important role in maintaining the leading edge temperature at levels consistent with airfoil design life. These cavities often have a complex cross-sectional shape to be compatible with the external contour of the blade at the leading edge. A survey of many existing geometries shows that, for analytical as well as experimental analyses, such cavities can be simplified in shape by a four-sided polygon with one curved side similar to the leading edge curvature, a rectangle with one semicircular side (often the smaller side) or a trapezoid, the smaller base of which is replaced by a semicircle. Furthermore, to enhance the heat transfer coefficient in these cavities, they are mostly roughened on three sides with ribs of different geometries. Experimental data on friction factors and heat transfer coefficients in such cavities are rare if not nonexistent. A liquid crystal technique was used in this experimental investigation to measure heat transfer coefficients in six test sections representing the leading-edge cooling cavities. Both straight and tapered ribs were configured on the two opposite sidewalls in a staggered arrangement with angles of attack to the mainstream flow, α of 60 and 90 deg. The ribs on the curved surface were of constant cross section with an angle of attack 90 deg to the flow. Heat transfer measurements were performed on the straight sidewalls, as well as on the round surface adjacent to the blade leading edge. Effects such as rib angle of attack to the mainstream flow and constant versus tapered rib cross-sectional areas were also investigated. Nusselt numbers, friction factors, and thermal performances are reported for nine rib geometries in six test sections.

Publisher

ASME International

Subject

Mechanical Engineering

Reference27 articles.

1. Burggraf, F., 1970, “Experimental Heat Transfer and Pressure Drop With Two Dimensional Turbulence Promoters Applied to Two Opposite Walls of a Square Tube,” Augmentation of Convective Heat and Mass Transfer, A. E. Bergles and R. L. Webb, eds., ASME, New York, pp. 70–79.

2. Chandra P. R. , HanJ. C., and LauS. C., 1988, “Effect of Rib Angle on Local Heat/Mass Transfer Distribution in a Two-Pass Rib-Roughened Channel,” ASME JOURNAL OF TURBOMACHINERY, Vol. 110, pp. 233–241.

3. Chandra P. R. , and HanJ. C., 1989, “Pressure Drop and Mass Transfer in Two-Pass Ribbed Channels,” Journal of Thermophysics, Vol. 3, No. 3, pp. 315–319.

4. Dittus, F. W., and Boelter, L. M. K., 1930, Publications in Engineering, Vol. 2, No. 13, University of California, Berkeley, CA, pp. 443–461.

5. Dutta, S., and Han, J. C., 1994, “Effect of Model Orientation on Local Heat Transfer in a Rotating Two-Pass Smooth Triangular Duct,” presented at the ASME Winter Annual Meeting.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3