Concurrent Surrogate Model Selection (COSMOS) Based on Predictive Estimation of Model Fidelity

Author:

Chowdhury Souma1,Mehmani Ali2,Messac Achille3

Affiliation:

1. Mississippi State University, Starkville, MS

2. Syracuse University, Syracuse, NY

3. Mississippi State University, Mississippi State, MS

Abstract

One of the primary drawbacks plaguing wider acceptance of surrogate models is their low fidelity in general. This issue can be in a large part attributed to the lack of automated model selection techniques, particularly ones that do not make limiting assumptions regarding the choice of model types and kernel types. A novel model selection technique was recently developed to perform optimal model search concurrently at three levels: (i) optimal model type (e.g., RBF), (ii) optimal kernel type (e.g., multiquadric), and (iii) optimal values of hyper-parameters (e.g., shape parameter) that are conventionally kept constant. The error measures to be minimized in this optimal model selection process are determined by the Predictive Estimation of Model Fidelity (PEMF) method, which has been shown to be significantly more accurate than typical cross-validation-based error metrics. In this paper, we make the following important advancements to the PEMF-based model selection framework, now called the Concurrent Surrogate Model Selection or COSMOS framework: (i) The optimization formulation is modified through binary coding to allow surrogates with differing numbers of candidate kernels and kernels with differing numbers of hyper-parameters (which was previously not allowed). (ii) A robustness criterion, based on the variance of errors, is added to the existing criteria for model selection. (iii) A larger candidate pool of 16 surrogate-kernel combinations is considered for selection — possibly making COSMOS one of the most comprehensive surrogate model selection framework (in theory and implementation) currently available. The effectiveness of the COSMOS framework is demonstrated by successfully applying it to four benchmark problems (with 2–30 variables) and an airfoil design problem. The optimal model selection results illustrate how diverse models provide important tradeoffs for different problems.

Publisher

American Society of Mechanical Engineers

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3