Affiliation:
1. Dresser-Rand, Olean, NY
2. Rotor Bearing Solutions International, Charlottesville, VA
Abstract
Squeeze film dampers in flexible rotors such as those in compressors, steam turbines, aircraft engines and other rotating machines are often modeled as linear devices. This linearization is valid only for a specified orbit where appropriate equivalent stiffness and damping coefficients can be found. However, squeeze film dampers are inherently nonlinear devices which complicates the analysis. This paper develops the harmonic balance method with a direct force model of the SFDs. This model is used for flexible rotors with squeeze film dampers where the rotor is treated as linear and the squeeze film damper is treated as nonlinear. The predictor-corrector method is employed to obtain the system forced response in the frequency domain after separating the nonlinear components from the linear components of the equations of motion. This approach is much more efficient than conventional full nonlinear transient analysis.
The application considered in this paper is the low pressure (LP) compressor of an aircraft engine. The LP compressor rotor has two roller bearings with squeeze film dampers and one ball bearing without a squeeze film damper. Orbits at the fan end dampers and the turbine end dampers for both the harmonic balance and nonlinear transient modeling are compared for accuracy and calculation time. The HB method is shown to be 5 to 12 times faster computationally for similar results. Fast Fourier transform results were obtained for various shaft operating speeds. Results were also obtained for the unbalance response at different locations with gravity loading. Finally, unbalance response of the rotor with varying centering spring stiffness values were obtained. The results show that the centering spring stiffness for the turbine end damper is less sensitive than the fan end damper.
Publisher
American Society of Mechanical Engineers
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献