Application of Origami in the Starshade Spacecraft Blanket Design

Author:

Sigel Deborah1,Trease Brian P.1,Thomson Mark W.1,Webb David R.1,Willis Paul1,Lisman P. Doug1

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

Abstract

A Starshade is a large deployable structure and sole payload of an external occulter. At 34m in diameter or more, starshades are designed to block most of the light from a nearby star so that a small orbiting space telescope can image and characterize the Earth-like exoplanets in orbit around it. The starshade resembles a sunflower with a circular central disk supporting petals that are arrayed around its periphery. The petal edges are precisely shaped to match an optical profile that prevents diffraction. The area circumscribed by the edges must be completely opaque, black, and non-reflective. The petals and ring structure are covered by specially designed deployable blankets that must remain completely opaque even if they become perforated by micrometeorites. The blankets must also not cause any significant on-orbit thermoelastic loads on the lightweight supporting ring and petal structures despite very large differential thermal strains that are developed between these Kapton blankets and the thermally stable composite ring and petal structures. There are two types of blankets: one for the deployable petals and one for the central support disc that is formed by a lightweight deployable ring truss structure. The starshade blankets cover such a large area that they must be unusually lightweight compared to conventional multi-layer insulated (MLI) spacecraft blankets. The blankets must also stow around the central hub of the spacecraft with the deployable ring and petal structures in a highly repeatable fashion. This makes them ideal candidates for origami folding schemes. Based on prior studies of large deployable rigid arrays, we began with variants on the origami flasher to fold the central ring blanket, which is a minimum of 20m in diameter. We looked at the simplest methods for integrating this large blanket with a mechanical ring truss while providing ample optical baffling and little to no thermally induced loads on the structure. Petal blankets were also developed using deployable softgoods with pseudo-mechanical and shingled designs with optically blocking folds for deployment. The design was developed iteratively utilizing a variety of prototypes to explore and demonstrate the interaction between the softgoods and rigid elements.

Publisher

American Society of Mechanical Engineers

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3