Damage Classification and Feature Extraction in Steel Moment-Resisting Frame Using Time-Varying Autoregressive Model

Author:

Pamwani Lavish1,Agarwal Vikram1,Shelke Amit2

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

2. Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India e-mail:

Abstract

In this paper, the time-varying autoregressive (TVAR) model is integrated with the K-means—clustering technique to detect the damage in the steel moment-resisting frame. The damage is detected in the frame using nonstationary acceleration response of the structure excited using ambient white noise. The proposed technique identifies and quantifies the damage in the beam-to-column connection and column-to-column splice plate connection caused due to loosening of the connecting bolts. The algorithm models the nonstationary acceleration time history and evaluates the TVAR coefficients (TVARCs) for pristine and damage states. These coefficients are represented as a cluster in the TVARC subspace and segregated and classified using K-means—segmentation technique. The K-means—approach is adapted to simultaneously perform partition clustering and remove outliers. Eigenstructure evaluation of the segregated TVARC cluster is performed to detect the temporal damage. The topological and statistical parameters of the TVARC clusters are used to quantify the magnitude of the damage. The damage is quantified using the Mahalanobis distance (MD) and the Itakura distance (ID) serving as the statistical distance between the healthy and damage TVARC clusters. MD calculates a multidimensional statistical distance between two clusters using the covariance between the state vectors, whereas ID measures the dissimilarity of the autoregressive (AR) parameter between reference state and unknown states. These statistical distances are used as damage-sensitive feature (DSF) to detect and quantify the initiation and progression of the damage in the structure under ambient vibrations. The outcome of both the DSFs corroborate with the experimental investigation, thereby improving the robustness of the algorithm by avoiding false damage alarms.

Funder

Defence Research and Development Organisation

Publisher

ASME International

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Civil and Structural Engineering

Reference46 articles.

1. Specification for Structural Steel Buildings;AISC,1999

2. Seismic Provisions for Structural Steel Buildings;AISC,2010

3. Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications;AISC,2010

4. Minimum Design Loads for Buildings and Other Structures, Standard ASCE/SEI 7-10;ASCE,2010

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3