Concept of Triple Heat Exchanger-Assisted Solar Pond Through an Improved Analytical Model

Author:

Verma Sunirmit1,Das Ranjan2

Affiliation:

1. Department of Mechanical Engineering,Indian Institute of Technology Ropar,Rupnagar, Punjab 140001, Indiae-mail: sunirmit.verma@iitrpr.ac.in

2. Department of Mechanical Engineering,Indian Institute of Technology Ropar,Rupnagar, Punjab 140001, Indiae-mail: ranjandas@iitrpr.ac.in

Abstract

Abstract A new three-zone heat extraction system and its analytical model for maximizing the thermal power output of salt gradient solar ponds against a given volume is proposed. The present study considers internal heat exchangers installed within the non-convective zone (NCZ), lower-convective zone (LCZ), and the ground below the pond. The work is validated against a simplified version of the model (eliminating ground and bottom-zone heat extractions) available in the existing literature. Contrary to the conventional practice of optimizing only the middle-zone pond thickness, here, the newly proposed expression is used to find ideal values of both the middle- and bottom-zone thicknesses of the pond along with its cross-sectional area. The present work acknowledges that although the three-zone heat extraction system is the best, yet if a choice for two-zone heat extraction is to be made between the NCZ–LCZ and ground–LCZ, then the former is a better alternative. The power output is observed to increase asymptotically with mass flow rates of the three heat exchangers. However, their values must lie much below their theoretical asymptotic limits and their selection is regulated by constructional and operational constraints. These involve a minimum pond depth to offset surface evaporation, ground seepage water loss, and constraints preventing turbulent flow in heat exchangers to reduce friction loss and pumping power. This work recommends using three heat exchangers instead of either one or two and provides cardinal guidelines to extract heat in an ideal manner for a fixed solar pond volume.

Funder

Science and Engineering Research Board

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3