Impact of the Stabilized Finite Element Method on Acoustic and Vortical Perturbations in Thermoacoustic Systems

Author:

Hofmeister Thomas1,Hummel Tobias2,Sattelmayer Thomas1

Affiliation:

1. Lehrstuhl für Thermodynamik, Fakultät für Maschinenwesen, Technische Universität München, Garching 85748, Germany

2. Lehrstuhl für Thermodynamik, Institute for Advanced Study, Technische Universität München, Garching 85748, Germany

Abstract

Abstract This paper seeks to advance linear stability analyses of thermoacoustic systems conducted with the stabilized finite element method (sFEM). Specifically, this work analyzes and quantifies the impact of the streamline-upwind-Petrov–Galerkin (SUPG) artificial diffusion scheme on (eigen)mode shapes and damping rates of the isentropic linearized Euler equations (LEEs) in frequency space. The LEE (eigen)mode shapes are separated into acoustic and vortical perturbation components via a Helmholtz decomposition and their sensitivity on the employed stabilization scheme is investigated separately. The regions where numerical stabilization mainly acts on the perturbation types are identified and explanations for the observations are provided. A methodology is established, which allows the quantification of the impact of artificial diffusion on the acoustic field in terms of a damping rate. This nonphysical damping rate is used to determine the physically meaningful, acoustic LEE damping rate, which is corrected by the contribution of artificial diffusion. Hence, the presented method eliminates a main shortcoming of LEE eigenfrequency analyses with the sFEM and, as a result, provides more accurate information on the stability of thermoacoustic systems.

Funder

Deutsche Forschungsgemeinschaft

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference21 articles.

1. Combined Acoustic Damping-Cooling System for Operational Flexibility of GT26/GT24 Reheat Combustors,2015

2. High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part II: Modeling and Analysis;ASME J. Eng. Gas Turbines Power,2017

3. Pulsation-Amplitude-Dependent Flame Dynamics of High-Frequency Thermoacoustic Oscillations in Lean-Premixed Gas Turbine Combustors;ASME J. Eng. Gas Turbines Power,2018

4. Thermoacoustic Modeling and Control of Multi Burner Combustion Systems,2003

5. Frequency Domain Predictions of Acoustic Wave Propagation and Losses in a Swirl Burner With Linearized Navier-Stokes Equations,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3