Parameter Identification for Electrochemical Models of Lithium-Ion Batteries Using Sensitivity Analysis

Author:

Dangwal Chitra1,Canova Marcello1

Affiliation:

1. Center for Automotive Research, The Ohio State University, Columbus, OH 43212

Abstract

Abstract Predicting the chemical and physical processes occurring in Lithium-ion cells with high-fidelity electrochemical models is today a critical requirement to accelerate the design and optimization of battery packs for automotive and aerospace applications. One of the common issues associated with electrochemical models is the complexity of parameter identification, particularly when relying only on experimental data obtained via non-invasive techniques. This paper presents a novel approach to improve the common methods of parameter calibration that consists of matching the predicted terminal voltage to test data via optimization methods. The study is conducted for an nickel-manganese-cobalt (NMC)-graphite cell, modeled using a reduced-order Extended Single Particle Model (ESPM). The proposed approach relies on using a large-scale particle swarm optimization (PSO), modified by including a term that accounts for the parameter sensitivity information, such that the rate of convergence and robustness of the algorithm to obtain a consistent solution in the presence of uncertainties in the initial conditions are significantly improved.

Publisher

ASME International

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3