Feasibility Verification of Blood Viscosity Estimation by Two-Dimensional Ultrasonic-Measurement-Integrated Blood Flow Analysis

Author:

Kadowaki Hiroko1,Kishimoto Takuya1,Tokunaga Takeshi1,Mori Koji1,Saito Takashi1

Affiliation:

1. Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan

Abstract

Abstract Although blood viscosity has attracted much attention for its effect on hemodynamic parameters related to atherosclerosis, quantitative method for evaluating blood viscosity in vivo is not currently established. The purpose of this study was to verify the feasibility of blood viscosity estimation by a two-dimensional ultrasonic-measurement-integrated (2D-UMI) analysis system that computes an intravascular blood flow field by feeding back an ultrasonic measurement data to a numerical simulation. A method to estimate blood viscosity was proposed by reproducing the flow field of an analysis object in the feedback domain of ultrasonic Doppler velocity in a 2D-UMI blood flow analysis system, and evaluating the variation of the Doppler velocity caused by the analysis viscosity in the nonfeedback domain at the downstream side. In a numerical experiment, a viscosity estimation was performed for numerical solutions of sinusoidal oscillating flows analyzed as a blood flow model in a human common carotid artery at four different types of blood viscosities. The estimation viscosities were made to correspond to those of all analysis objects by giving proper conditions on the feedback gain and feedback domain to optimize the accuracy of the 2D-UMI blood flow analysis. In conclusion, the feasibility of blood viscosity estimation by 2D-UMI analysis was established. Simultaneous measurement of the in vivo blood viscosity and flow field can be easily performed in many clinical cases by its widespread use at clinical sites, thereby clarifying the relationship between hemodynamics and vascular pathology for various blood flow fields.

Funder

Japan Society for the Promotion of Science

Publisher

ASME International

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3