Affiliation:
1. Department of Civil Engineering, Duke University, Durham, N. C.
2. U. S. Air Force; Duke University, Durham, N. C.
Abstract
The effect of currents on pipes anchored just above the ocean floor is the subject of this study. Lift, drag, and stability of two parallel pipes, parallel to a flat plane (the sea floor) were measured for simulated ocean currents up to two knots at several subcritical, free stream Reynolds numbers. First, a wind tunnel was utilized to find the lift and drag coefficients on two parallel, rigid, cylindrical models. The effects of horizontal spacing, vertical spacing from the ground plane, and orientation angle of the horizontal free stream velocity were observed. These results were compared to date available for the single and double cylinder cases where the ground plane was absent. Second, a water tow tank was utilized to observe conditions for vortex-shedding induced vibrations for fixed end, flexible, parallel cylinders. The natural frequencies and buoyancies of these models simulated pipelines of reasonable span clamped to evenly spaced anchor blocks. A numerical example illustrates the use of these data in the design of a dynamically stable piping system close to the ocean floor.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献