Flames of Swirling Double-Concentric Jets Subject to Acoustic Excitation at Resonance

Author:

Zargar Omid Ali1,Huang Rong Fung2,Hsu Ching Min3

Affiliation:

1. Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10672, Taiwan, China e-mail:

2. Professor Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10672, Taiwan, China e-mail:

3. Department of Mechanical Engineering, National Formosa University, No. 43, Section 4, Keelung Road, Yunlin 632, Taiwan, China e-mail:

Abstract

The effects of acoustic excitation at resonance on the flame appearances, flame lengths, flame temperatures, and combustion product concentrations of combusting swirling dual-disk double-concentric jets were studied. The Reynolds number of the annular swirling air jet was varied, while it was fixed at 2500 for the central propane jet. The central fuel jet was acoustically forced by a loudspeaker, which was installed using downstream longitudinal irradiation. The central jet pulsation intensities were measured by a calibrated, one-component hot-wire anemometer. The instantaneous full-length and close-up flame images were captured to identify the characteristic flame modes. Long-exposure flame images were taken to measure the flame lengths. The axial and radial temperature distributions of flames were measured using a homemade, fine-wire R-type thermocouple. The concentrations of combustion products were measured by a gas analyzer. Four characteristic flame modes, blue-base wrinkled flame, yellow-base anchored flame, blue-base anchored flame, and lifted flame, were observed in the domain of central jet pulsation intensity and annular swirling jet Reynolds number. The lifted flame, which was formed at large central jet pulsation intensities, presented characteristics of a premixed flame due to significant mixing induced by violent, turbulent flow motions. It was short and stable, with high combustion efficiency and low toxic emissions, when compared with the unexcited flame and other excited characteristic flame modes, which presented characteristics of diffusion flame.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3