The Biology Phenomenon Categorizer: A Human Computation Framework in Support of Biologically Inspired Design

Author:

Arlitt Ryan M.1,Immel Sebastian R.2,Berthelsdorf Friederich A.2,Stone Robert B.2

Affiliation:

1. School of Mechanical, Industrial, and Manufacturing Engineering, 204 Rogers Hall, Oregon State University, Corvallis, OR 97331 e-mail:

2. School of Mechanical, Industrial, and Manufacturing Engineering, 204 Rogers Hall, Oregon State University, Corvallis, OR 97331

Abstract

Locating relevant biological analogies is a challenge that lies at the heart of practicing biologically inspired design. Current computer-assisted biologically inspired design tools require human-in-the-loop synthesis of biology knowledge. Either a biology expert must synthesize information into a standard form, or a designer must interpret and assess biological strategies. These approaches limit knowledge breadth and tool usefulness, respectively. The work presented in this paper applies the technique of human computation, a historically successful approach for information retrieval problems where both breadth and accuracy are required, to address a similar problem in biologically inspired design. The broad goals of this work are to distribute the knowledge synthesis step to a large number of nonexpert humans, and to capture that synthesized knowledge in a format that can support analogical reasoning between designed systems and biological systems. To that end, this paper presents a novel human computation game and accompanying information model for collecting computable descriptions of biological strategies, an assessment of the quality of these descriptions gathered from experimental data, and a brief evaluation of the game's entertainment value. Two successive prototypes of the biology phenomenon categorizer (BioP-C); a cooperative, asymmetric, online game; were each deployed in a small engineering graduate class in order to collect assertions about the biological phenomenon of cell division. Through the act of playing, students formed assertions describing key concepts within textual passages. These assertions are assessed for their correctness, and these assessments are used to identify directly measurable correctness indicators. The results show that the number of hints in a game session is negatively correlated with assertion correctness. Further, BioP-C assertions are rated as significantly more correct than randomly generated assertions in both prototype tests, demonstrating the method's potential for gathering accurate information. Tests on these two different BioP-C prototypes produce average assertion correctness assessments of 3.19 and 2.98 on a five-point Likert scale. Filtering assertions on the optimal number of game session hints within each prototype test increases these mean values to 3.64 and 3.36. The median assertion correctness scores are similarly increased from 3.00 and 3.00 in both datasets to 4.08 and 3.50. Players of the game expressed that the fundamental anonymous interactions were enjoyable, but the difficulty of the game can harm the experience. These results indicate that a human computation approach has the potential to solve the problem of low information breadth currently faced by biologically inspired design databases.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference52 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer Games for Design Creativity Research: Opportunities and Challenges;Design Computing and Cognition’22;2023

2. Scaling up analogical innovation with crowds and AI;Proceedings of the National Academy of Sciences;2019-02-04

3. SOLVENT;Proceedings of the ACM on Human-Computer Interaction;2018-11

4. Biomimetics and its tools;Bioinspired, Biomimetic and Nanobiomaterials;2017-06-01

5. Experiments with Human Integration in Asynchronous and Sequential Multi-agent Frameworks for Architecture Optimization;Procedia Computer Science;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3