An Efficient Computing Explicit Method for Structural Dynamics

Author:

Chang Shuenn-Yih1

Affiliation:

1. Department of Civil Engineering, National Taipei University of Technology, NTUT Box 2653, Taipei, Taiwan 106, Republic of China

Abstract

An integration algorithm, which integrates the most important advantage of explicit methods of the explicitness of each time step and that of implicit methods of the possibility of unconditional stability, is presented herein. This algorithm is analytically shown to be unconditionally stable for any linear elastic and nonlinear systems except for the instantaneous stiffness hardening systems with the instantaneous degree of nonlinearity larger than 43 based on a linearized stability analysis. Hence, its stability property is better than the previously published algorithm (Chang, 2007, “Improved Explicit Method for Structural Dynamics,” J. Eng. Mech., 133(7), pp. 748–760), which is only conditionally stable for instantaneous stiffness hardening systems although it also possesses unconditional stability for linear elastic and any instantaneous stiffness softening systems. Due to the explicitness of each time step, the possibility of unconditional stability, and comparable accuracy, the proposed algorithm is very promising for a general structural dynamic problem, where only the low frequency responses are of interest since it consumes much less computational efforts when compared with explicit methods, such as the Newmark explicit method, and implicit methods, such as the constant average acceleration method.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. General Formulation of Eliminating Unusual Amplitude Growth for Structure-Dependent Integration Algorithms;International Journal of Structural Stability and Dynamics;2019-11-04

2. Explicit concomitance of implicit method to solve vibration equation;Earthquake Engineering and Engineering Vibration;2012-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3